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Abstract: Adaptive beamforming is mainly used for interference rejection and for resolution when the array steering vector 
is already known. And adaptive beamforming is signal processing system which combined a signal in a manner to increase 
the signal strength in a particular direction . Sometime there are some mismatches between the true value and assumed 
value,whichcausesdegradation in adaptive beamforming technique. In this paper, we characterize a novel neural network 
method to robust adaptive beamforming. In the proposed algorithm ,it depend on the class of diagonal loading styles which is 
three-layer RBFNN(radial basis function neural network) and in evident modeling of improbability in the required signal 
array response. In this algorithm, the list of the best weight vector is noticed as a mapping problem, which can be modeled 
with the help of RBFNN with input/output pairs.Here best performance under good conditions, provides the robustness 
against the signal steering vector whichreduce themismatches and  output array SINR analogically near to the best 
one.Relative to other adaptive beamforming method simulation results improve the performance.This algorithm provides 
excellent robustness to mismatches, boosts the array system performance under non ideal situation. 
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Introduction 
A one most usable technique is Adaptive Beamformingin which an array of antennas is broken in such a way  to achieve 
maximum response or result  in a particular lane by estimating the signal arrival from a preferred direction (in the presence of 
unwanted signals like noiseetc) while signals of the alike frequency from other directions are rejected or discarded. By 
increasing the weights of each of the sensors (antennas) used in the array this can beattained. Because of general purpose 
nature and fast convergence ratesNeural networks have found number of applications in the field of signal processing. Smart 
antenna is technology for higher user capacity mainly in wireless communication system. The heart of smart antenna is the 
adaptive beam- forming algorithms in antenna array because this technique can achieve maximum response in a particular 
direction by estimating the signal arrival from a desired direction.SMI, RLS, CMA arethe  numerous Adaptive  beamforming 
algorithmsvarying in difficulty based on different criteria for updating and computing the best possible weights.  
Adaptive beamforming is identified to have resolution and interference rejection ability when the array steering vector is 
well-known, however the performance of adaptive beamforming may degrade severely due to mismatches. This problem can 
be controlled by neural network. Here the progress of a neural network- based robust adaptive beamforming algorithm, the 
problems are calculating the weights of an adaptive array antenna as a mapping problem. 
When adaptive arrays are applied to practical troubles, the performance degradation of adaptive beam-forming techniques 
because some of underlying expectations on the environment, sources, or sensor array can be debased and this may cause a 
mismatch between the assumed and actual output signal. There are number of approaches which providebetter robustness 
against some types of mismatches. Out of all the most common is LCMV( linearly constrained minimum 
variance)beamformer , which is used to provide robustness against uncertainty in the signal. To account for the signal 
steering vector mismatches, additional linear controls can be used to improve the robustness of adaptive beamforming . 
Diagonal loading has been aacceptable approach to get better the robustness of adaptive beamforming algorithms. Here the 
serious drawback of this approach is that there is no trustworthy way to select the diagonal loading factor. From all of this we 
can see that these approaches can not be predictable to provide sufficient robustness improvements. Neural network, using 
addition, multiplication, division, and threshold operations, can be readily implemented in analog VLSI. Neural network 
methods have  advantages as nonlinear property,general purpose nature, passive parallelism,generalization capability,  
adaptive learning capability  and fast convergence rates. Neural network method have two phase: training phase and 
performance phase. Neural network is first trained with known input/output pattern pairs. It can be implemented off-line, 
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although a large training pattern set is required for network training. After the training phase, it can be used directly to replace 
the difficult system dynamics. Motivated by these inherent  neural networkadvantages, this paper represents the development 
of robust adaptive beamforming algorithm based on neuralnetwork , which treats the trouble of computing the weights of an 
adaptive array antenna as a mapping problem. In this paper, we propose a novel approach to robust adaptive beamforming 
and show clearly how to efficiently compute the weight vector by the neural network method to achive the better results. The 
proposed algorithm provides excellent robustness to signal mismatches, makes the mean output array SINR consistently close 
to the optimal one and  enhances the array system performance innonideal conditions. The excellent performance of our 
proposed algorithm is proved  via a number of simulation examples. 
 
The Radial Basis Function Neural Network (RBFNN) 
The weight vector of the proposed algorithm is a nonlinear function of the sample covariance matrix, and is not suitable for 
real-time implementation. Therefore, it can be approximated using a suitable architecture such as RBFNN in this paper. The 
array outputs are preprocessed, and then applied to the RBFNN. The sample covariance matrix R is presented to the input 
layer of the RBFNN, and the vector RABw is produced at the output layer. As it is the case, with most neural network, the 
RBFNN is designed to perform an input-output mapping. 
 
The RBFNN Model 
The RBFNN is a special three-layered feedforward network, which consists of the input layer, the output layer, and the 
hidden layer as shown in Fig. 1. In the hidden layer, the nonlinear functions which are performed in this transformation are 
usually taken to be Gaussian functions of suitably chosen means and variances. The weights from the hidden layer to the 
output layer are recognized by following a supervised learning system. Here we assume that J , L , P nodes are the input 
layer, the hidden layer, and the output layers correspondingly. 

 
Fig 1: Structure of a three-layer RBFNN 

 
Training Phase of the RBFNN 
The  RBFNN is trained with a representative set of training input/output pairs, after training phase  it is ready to function in 
the performance phase. In the performance phase, the RBFNN produces estimation of the weight vector  that is W . 
 
Performance Phase of the RBFNN 
In the performance phase after the training phase is complete, the RBFNN has established an approximation of the desired 
input-output mapping. In this phase, the neural network is expected to generalize, that is, answer to inputs that has never seen 
before, but drawn from the same distribution as the inputs used in the training set. In the performance phase, the RBFNN 
produces outputs to past unseen inputs by interpolating between the inputs used in the previous training phase. 
 a) Generate the rearranged covariance matrix z ; 
 b) Present the array output vector at the input layer of the trained RBFNN. The output layer of the trained RBFNN will 
produce the estimation of the weight vector for the array output.  
Unlike the SMI, the least mean-square, or recursive least squares algorithms, where the optimization is carried out whenever 
the directions of the desired or interfering signals  
change, in our algorithm, the weight vector of the trained network can be used to produce the optimum weight vector needed 
to steer the narrow beams of the adaptive array to the ways of the desired signal in real time. 
 
Simulation Results 
To justify the performance  here we  present  some simulations of the SMI, LSMI and robust adaptive beamforming.   
We determined thatto prevent spatial aliasing the element spacing must be d ≤ λ / 2. Here we relax this restriction and look at 
different element linear array and resulting array characteristics for various element spacing, namely, their beam-pattern. 
Example 1: Array beampatterns of the algorithms .In the example, we assume that both the presumed and actual signal spatial 
signatures are plane waves impinging from the DOAs 0D and 2D, respectively. Fig. 2 displays the beampatterns of the 
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methods tested for the fixed SNR 10dB = for the no-mismatch case. The vertical line in the figure denotes the direction of 
arrival of the desired signal. From Fig. 2, we note that the proposed algorithm based on RBFNN can adapt the radiation 
pattern of the antenna to direct narrow beam to the desired signal and nulls interfering sources. Fig. 3 displays the 
beampatterns of the methods tested for the fixed SNR 10dB = for a 2D mismatch. The vertical line in the figure denotes the 
direction of arrival of the actual signal. From Fig. 3, we note that although the beampatterns of the proposed algorithm based 
on RBFNN do not have nulls at the DOAs of the interferences as deep as those of the SMI algorithm, the interferences are 
sufficiently suppressed by our algorithm. 

 
Fig 2 : Comparison of the beampatterns (no mismatch) 

 

 
 

Fig 3: Comparison of the beampatterns (a 20 mismatch) 
 
SMI algorithm is very sensitive even to slight mismatches that can easily occur in practical situations and LSMI algorithm 
can improve the performance of the SMI algorithm. Obviously, the proposed algorithm based on RBFNN provides a 
significantly improved robustness against signal steering vector mismatches and makes the mean output array SINR close to 
the optimal one at all values of the SNR and N. 
 

 
 

Fig 4: Output SINR versus SNR 
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Conclusions 
We have shown how to obtain robust adaptive beamforming based on the RBFNN, which is successful in tracking the desired 
signal while simultaneously nulling the interference sources. The proposed algorithm is much less sensitive to signal steering 
vector mismatches. Furthermore, the proposed algorithm based on RBFNN consistently enjoys excellent performance 
because it achieves the values of SINR that are close to the optimal one in a wide range of the SNR andN . A number of 
numerical examples clearly demonstrate that the proposed robust adaptive beamforming algorithm based on neural network 
consistently enjoys a considerably improved performance as compared to the other algorithms.  
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